

ioXt 2020 Residential Camera Profile

Version 1.0

Document C-20-12-15-V1.0

Date 4/9/21

Document Status: Release

Page 1

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Nation of the and Disclosure	-
Notice of Use and Disclosure	5
Document Version Information	6
Participants	6
Introduction	7
Purpose	7
Acronyms and Abbreviations	7
Definitions	8
References	10
Profile Scope	10
Device expected use	10
Devices which are in scope	10
Device MUST include the following	10
Device MAY include the following	10
Requirements	11
Test Case Library Version	11
Profile Summary	12
Proven Cryptography	12
Requirements	12
Security Levels	12
No Universal Password	13
Requirements	13
Security Levels	13
Verified Software	13
Requirements	13
Security Levels	14
Security by Default	14
Requirements	14
Security Levels	14
Secured Interfaces	14
Requirements	14
Security Levels	15
Automatically Applied Updates	16
Requirements	16
Security Levels	16

Page 2

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Vulnerability Reporting Program	16
Requirements	16
Security Levels	17
Security Expiration Date	17
Requirements	17
Security Levels	17
Threat Model	17
Threat Evaluation	17
Likelihood (Difficulty x Access)	17
Impact (Scope x Data access/control)	18
Severity (Likelihood x Impact)	18
Provisioning	18
QR codes used for provisioning via BLE or SoftAP visible on external product	18
Likelihood	18
Impact	18
Severity	19
Countermeasure	19
Normal Operation - Network-based Attacks	19
NTP Attack	19
Likelihood	19
Impact	19
Severity	19
Countermeasure	20
Normal Operation- Physical Attacks	20
SD Card Stealing	20
Likelihood	20
Impact	20
Severity	20
Countermeasure	20
Outdoor Physical threats around QR Code Stealing	21
Likelihood	21
Impact	21
Severity	21
Countermeasure	21
Laser/Blinding attack on the physical sensor.	21
Likelihood	22
Impact	22
Severity	22
Countermeasure	22

Page 3

Copyright © ioXt Alliance, Inc. (2018 – 2020)

PIR Ambient Temperature Attacks	22
Likelihood	22
Impact	22
Severity	23
Countermeasure	23
Adjacent Sensor Attacks	23
Likelihood	23
Impact	23
Severity	23
Countermeasure	24
Normal Operation - Network-based Attacks	24
Man in the middle attack during video capture to cloud	24
Likelihood	24
Impact	24
Severity	24
Countermeasure	24
Man in the middle attack during camera control from cloud to device	25
Likelihood	25
Impact	25
Severity	25
Countermeasure	25
Normal Operation - Functional Attacks	26
Reboots or Automated Firmware Updates while Monitoring	26
Likelihood	26
Impact	26
Severity	26
Countermeasure	26

1. Notice of Use and Disclosure

Copyright © ioXt Alliance, Inc. (2018 – 2021). All Rights Reserved. This information within this document is the property of the ioXt Alliance and its use and disclosure are restricted.

Elements of ioXt Alliance documentation, specifications, and test plans may be subject to third party property rights, including without limitation copyrights and patents. The ioXt Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third-party intellectual property rights.

This document and information contained herein are provided on a "AS IS" basis.

THE IOXT ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD-PARTIES, OR ANY IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR USE, TITLE, NON INFRINGEMENT, OR GUARANTEE OF PRODUCT SECURITY. IN NO EVENT WILL THE IOXT ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN.

The above notice must be included in all copies of this document.

Copyright © ioXt Alliance, Inc. (2018 – 2020)

2. Document Version Information

Version	Date	Author	Description
0.01	7/27/20	Brad Ree (ioXt)	1. Initial Draft
0.02	8/12/20	Bridgette Roberts (ioXt)	1. Comment compilation and formatting.
0.03	12/15/20	Brad Ree (ioXt)	 Reformat to Google Doc. Device scope completed Threat model completed.
0.9	3/24/20	Brad Ree (ioXt)	1. Final document for board approval
1.0	4/9/21	Brad Ree (ioXt)	1. Release 1.0

1. Participants

Amit Agrawal	Amazon
Jorge Coronel	Google
Brooke Davis	Google
Shubha Gopalakrishna	Bureau Veritas
Dominick Gregory	Buzr
Gabriel Groen	ioXt
Asad Hawk	Comcast (VICE-CHAIR)
Jameson Hyde	NCC Group
Dave Kleidermacher	Google
Rutwij Kulkarni	Acumen Security
Eugene Liderman	Google
Lloyd Linder	Mobilitie
Tomislav Nad	SGS
Rebecca Onaitis	ioXt
Parthiv Parikh	SGS
Jae Park	Buzr
Suresh Pattar	iClimbSystems
Mariela Pavlova	Infineon Technologies
Brad Ree	ioXt Alliance
Bridgette Roberts	ioXt Alliance
Aron Rosenberg	Logitech (CHAIR)
Joel Scambray	NCC Group
Pawel Somietanka	Silvair, Inc.
Jordi Ventayol	Applus Laboratories
Catalin Visinescu	NCC Group

Page 6

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Antonio Vizcaino Jorge Wallace Simon Watson Rob Wood Dekra Dekra NCC Group NCC Group

Introduction 2.1. Purpose

The Residential Camera profile provides a base level of security for all IP residential cameras, along with higher security levels for more advanced cameras. This profile is targeted for residential cameras, but may be used for light commercial or other deployments. The profile is focused on cybersecurity threats, with a primary focus on preventing large scale remote attacks. The profile may include some physical security protections, but does not specifically address physical or tamper style attacks for monitored security applications. However, the profile may be used in conjunction with physical security standards. The profile may also be used in conjunction with other ioXt profiles for combination devices.

Though the profile may be used for battery powered constrained cameras, the primary focus is to provide a set of baseline security requirements for powered IP cameras. Future extensions to address specific application needs may be applied. Further, other extensions such as a privacy or regional regulatory extension may also be applied.

2.2. Acronyms and Abbreviations

Acronym	Definition	
ΟΤΑ	Over the Air	
2FA	 Two-factor authentication (2FA) is an extra layer of security that uses an additional factor to validate a user's identity. A factor can be: Something you know - as password, answer to a "secret question" or PIN Something you have - a mobile phone or hardware token (e.g. Yubikey) Something you are - fingerprint, iris scan, face scan 	
PII	Personal Identifiable Information	

Page 7

Copyright © ioXt Alliance, Inc. (2018 - 2020)

2.3. Definitions

Term	Definition
Initialization Mode	The initialization mode is the initial state in which the product exists when first being configured by the Administrator for use in an account. Typical operations expected during this mode is network configuration, account/user configuration, cloud and device configuration, and initial firmware updates.
Management Mode	The management mode is the state in which an Administrator performs non-operational activities, such as device configuration, network configuration, account/user configuration, and firmware updates. The primary difference between the Management Mode and the Initialization Mode is Management Mode is entered from the Operating Mode of the device.
Operating Mode	The operating mode is the state in which the device is performing the primary tasks in which the device was designed to operate. The operating mode is the typical mode in which a user interacts with a device.
External storage	External storage is any storage which is accessible to the user through physical means intentionally provided by the manufacturer. Typical examples would be a SD card located inside a user accessible cavity with a sliding cover.
Known security vulnerabilities	Known security vulnerabilities are any verified vulnerability in which a researcher has submitted to the developer, vulnerabilities received from the developer of SDKs or other libraries included in the application, or vulnerabilities published in the NIST NVD for any previous versions of the developer's application.
Remote attack	Remote attacks are defined as any attack in which the attacker is not located on the local network of the device. Typically, these attacks are launched from the Internet towards the user or the server. Man in the Middle attacks are NOT remote attacks.
Proximity attack	Proximity attacks are any attack in which the attacker is within radio range of the device, or is located on the same local network as the user. The attacker may not be physically located on the local network, but may have remote control of another device on the local network.
Standard cryptography	Public cryptographic algorithms and protocols that are recommended by industry groups or standard organizations and that are considered best-practice.

Page 8

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Firmware	System software that ships with the device and that is provisioned during manufacturing,	
Vulnerability Disclosure Program	A vulnerability disclosure program offers a channel for researchers to report security issues and vulnerabilities. A VDP may offer rewards to researchers, but is not required. A VDP must inform the researcher that the report was received, provide time estimates for a response, and then inform the research of any fixes applied to address the issue. ioXt recommends manufacturers follow ISO 29147.	
Entity: User	A User has access rights to operate the product, but may be prohibited from configuration or maintenance modes. Typically, a user may not create other user accounts.	
Entity: Administrator	An Administrator has access rights to install, configure, or maintain the product. An administrator may also create user accounts.	
Entity: Account	The account is a collection of users and administrators which may access/control the product. Different users may have different access rights, but all fall under the control of a common administrator(s).	
Sensitive account cloud data	Sensitive account cloud data for the camera profile is any data which the user deems private and should only be accessible to the users inside the account. Typical examples would include audio/video content including live and recorded content, but may not include metadata about the content. The user may grant access to the user data to monitoring services or other 3rd party services. Sensitive account cloud data for the camera profile does not include account information and device configurations which may be shared with the manufacturer or service provider.	
Uniquely Encrypted	Uniquely Encrypted data refers to all the user data for an account. This user data (though it may be accessed by multiple users in the account) shall be uniquely encrypted from the user data from another account. The primary goal is to isolate user data such that accendetial access or data leaks will not expose raw sensitive user data.	
Hardware Root of Trust	A hardware root of trust is the foundation on which all secure operations of a computing system depend. It contains the keys used	

Page 9

Copyright © ioXt Alliance, Inc. (2018 – 2020)

	for cryptographic functions and enables a secure boot process. It is inherently trusted, and therefore must be secure by design.
Debug Interface	A debug interface is any interface used by the manufacturer to configure, program, or monitor the device in the factory or repair centers. A debug interface is not used for the primary operation of the device. It should be noted that logical interfaces may be exposed on the operational interface. These logical interfaces shall be protected to the same level as a dedicated debug interface.

2.4. References

3. Profile Scope

3.1. Device expected use

- The consumer uses the device for personal video surveillance.
- The consumer uses the device for personal video communications.
- The consumer uses the device for remote video monitoring.
- The consumer uses the device as an unattended or stationary device containing video, image, or audio capture capabilities where the media stream is intended to be consumed outside of the device.
- The consumer expects that recordings stored locally or in the cloud shall be secured from remote attack and viewable only by authorized parties.
- The consumer expects that only parties explicitly authorized by the consumer should be able to view live video, hear live audio, or change settings.

3.2. Devices which are in scope

3.2.1. Device MUST include the following

- The device MUST have an interface which allows it to be connected to an IP Network.
- The device MUST include an image sensor.
- The device MUST offer a mechanism to remotely retrieve or send the media content.

3.2.2. Device MAY include the following

- The device MAY include a microphone.
- The device MAY include a speaker.

Page 10

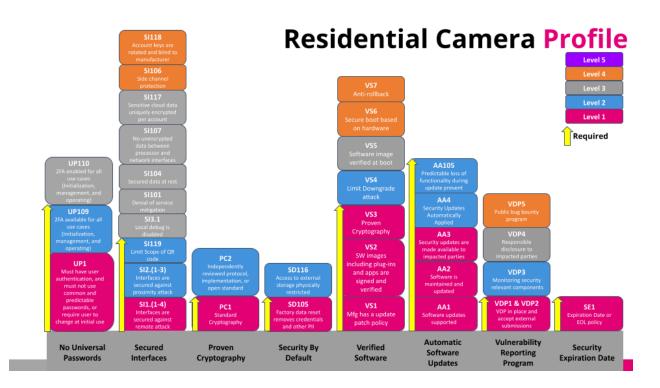
Copyright © ioXt Alliance, Inc. (2018 – 2020)

- The device MAY include motion detection capabilities.
- The device MAY include audio event detection capabilities.
- The device MAY include local, remote, or cloud storage capabilities.
- The device MAY include infrared or other illumination capabilities.
- The device MAY include Physical or Digital Pan-Tilt-Zoom (PTZ) controls.
- The device MAY include privacy controls such as a button, shutter, or setting which blocks the video and audio functionality.
- The device MAY include communications interfaces such as Wi-Fi, BLE, IEEE 802.15.4 and Ethernet.

4. Requirements

4.1. Test Case Library Version

The profile requirement document only describes the test cases needed for certification by test case ID. The actual text of the test cases are located in the ioXt Test Case Library. As the test case library is a shared document used by all profiles, there may be newer versions of the library than was approved when this profile was created.


The Residential Camera profile version 1.0 shall only use ioXt Test Case Library version 5.0.

4.2.

Copyright © ioXt Alliance, Inc. (2018 – 2020)

4.3. Profile Summary

4.4. Proven Cryptography

4.4.1. Requirements

ID	Test Case	
<u>PC1</u>	Standard cryptography	
<u>PC2</u>	Independently reviewed protocol, implementation, or open standard	

4.4.2.	Security	Levels
--------	----------	--------

Security Level	Test Cases	Required For Certification
1	PC1	Yes
2	PC2	

Page 12

Copyright © ioXt Alliance, Inc. (2018 – 2020)

4.5. No Universal Password

4.5.1. Requirements

ID	Test Case
<u>UP1</u>	User credentials shall not be common or predictable, or the credentials must be required to change at initial use.
<u>UP109</u>	2FA is available for all use cases (initialization, management, operating)
<u>UP110</u>	2FA must be enabled in all use cases (initialization, management, operating)

4.5.2. Security Levels

Security Level	Test Cases	Required for Certification
1	UP1	Yes
2	UP109	Yes
3	UP110	

4.6. Verified Software

4.6.1. Requirements

ID	Test Case
<u>VS1</u>	Manufacturer has an update patch policy
<u>VS2</u>	Software images including plug-ins and apps are signed and verified
<u>VS3</u>	Proven Cryptography
<u>VS4</u>	Anti-rollback
<u>VS5</u>	Software images verified at boot time
<u>VS6</u>	Secure boot based on hardware root of trust
VS7	Anti-rollback

Page 13

Copyright © ioXt Alliance, Inc. (2018 – 2020)

4.0.2. Security Levels	4.6.2.	Security	Levels
------------------------	--------	----------	--------

Security Level	Test Cases	Required for Certification
1	VS1 VS2 VS3	Yes
2	VS4	
3	VS5	
3	VS6 VS7	

4.7. Security by Default

4.7.1. Requirements

ID	Test Case	
<u>SD105</u>	Factory data reset removes credentials and other PII	
<u>SD116</u>	Access to external storage is physically restricted	

4.7.2. Security Levels

Security Level	Test Cases	Required for Certification
2	SD105	Yes
3	SD116	

4.8. Secured Interfaces

4.8.1. Requirements

ID	Test Case
<u>SI1.1</u>	Remote Attack: All certifiable protocols used on the interfaces contained in the device shall be Certified
<u>SI1.2</u>	Remote Attack: Unused Services are disabled

Page 14

Copyright © ioXt Alliance, Inc. (2018 – 2020)

<u>SI1.3</u>	Remote Attack: Authentication	
<u>SI1.4</u>	Remote Attack: Secured Communications	
<u>SI2.1</u>	Proximity Attack: Unused Services are disabled	
<u>SI2.2</u>	Proximity Attack: Authentication	
<u>SI2.3</u>	Proximity Attack: Secured Communications	
<u>SI119</u>	Limit Scope of QR Codes	
<u>SI3.1</u>	Local Attack: Debug ports are disabled or protected by authentication	
<u>SI101</u>	Proximity Attack: Denial of Service Mitigation	
<u>SI104</u>	Securing Data at Rest	
<u>SI107</u>	Local Attack: No unencrypted data between processor and network interfaces	
<u>SI117</u>	Sensitive cloud data is uniquely encrypted per account	
<u>SI106</u>	Local Attack: Side Channel Protection	
<u>SI118</u>	Account keys for sensitive cloud data encryption are rotated and blind to manufacturer	

4.8.2. Security Levels

Security Level	Test Cases	Required for Certification
1	SI1.1 SI1.2 SI1.3 SI1.4	Yes
2	SI2.1 SI2.2 SI2.3 SI119	Yes
3	SI3.1 SI101 SI104 SI107 SI117	
4	SI106	

Page 15

Copyright © ioXt Alliance, Inc. (2018 – 2020)

SI118

4.9. Automatically Applied Updates

4.9.1. Requirements

ID	Test Case	
<u>AA1</u>	Software updates supported	
<u>AA2</u>	Software is Maintained and Updated	
<u>AA3</u>	Software updates are made available to impacted parties	
AA4	Security updates applied automatically, when product usage allows.	
<u>AA105</u>	Automatic Firmware Updates must occur at a non-predictable, random time	

4.9.2. Security Levels

Security Level	Test Cases	Required for Certification
1	AA1 AA2 AA3	Yes
2	AA4 AA105	Yes

4.10. Vulnerability Reporting Program

4.10.1. Requirements

ID	Test Case
VDP1	Vulnerability Disclosure Program (VDP) in place
VDP2	Accept external submissions
VDP3	Monitoring security relevant components.
VDP4	Responsible disclosure of defects to impacted parties that must take action.

Page 16

Copyright © ioXt Alliance, Inc. (2018 – 2020)

VDP5

4.10.2. Security Levels

Security Level	Test Cases	Required for Certification
1	VDP1 VDP2	Yes
2	VDP3	
3	VDP4	
4	VDP5	

4.11. Security Expiration Date

4.11.1. Requirements

ID	Test Case	
<u>SE1.1</u>	End of life notification policy is published	
<u>SE1.2</u>	Expiration Date is published	

4.11.2. Security Levels

Security Level	Test Cases	Required for Certification
1	SE1.1 or SE1.2	Yes

5. Threat Model

This profile incorporates all the threats identified by the "Common WiFi Device" document version 1.0. Any changes below supersede the Severities identified in the common doc.

Copyright © ioXt Alliance, Inc. (2018 – 2020)

5.1. Threat Evaluation

5.1.1. Likelihood (Difficulty x Access)

Difficulty \downarrow Access \rightarrow	Physical Access	Proximity Access	Remote Access
Difficult	Low	Medium	Medium
Moderate	Low	Medium	High
Easy	Medium	High	High

5.1.2. Impact (Scope x Data access/control)

Scope \downarrow Data Access/Control \rightarrow	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device	Low	Medium	Medium
Local Network	Low	Medium	High
Complete Fleet	Medium	High	High

5.1.3. Severity (Likelihood x Impact)

Likelihood↓Impact→	Low	Medium	High
Low	Low	Medium	Medium
Medium	Low	Medium	High
High	Medium	High	High

5.2. Provisioning

5.2.1. QR codes used for provisioning via BLE or SoftAP visible on external product

Threat Description	The QR code containing the BLE Configuration or SoftAP SSID and		
	passphrase are leaked from the factory		
Threat Agent	Product development, factory or programming location employee.		
Resulting Impact	Pairing information is leaked.		

5.2.1.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			
Medium			
Easy	Х		

Page 18

Copyright © ioXt Alliance, Inc. (2018 – 2020)

5.2.1.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device	X		
Local Network			
Complete Fleet			

5.2.1.3. Severity

Likelihood↓Impact→	Low	Medium	High
Low			
Medium	Х		
High			

5.2.1.4. Countermeasure

Test Case	None Required
Comments/Guidance	Pairing Codes can't be visible once installed or placed in service

5.3. Normal Operation - Network-based Attacks

5.3.1. NTP Attack

Threat Description	Override or force a change in the NTP servers a device uses, which can change the wall clock time reference for that device and its associated recordings.	
Threat Agent	Remote attacker who gained access to the network. Local attacker who has possession of the device.	
Resulting Impact	 Video timestamps could be altered Time based Actions can be bypassed (scheduled recordings, alarms, etc) Expired certificates could be ignored 	

5.3.1.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			X
Moderate			
Easy			

5.3.1.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device			
Local Network	Х		
Complete Fleet			

Page 19

Copyright © ioXt Alliance, Inc. (2018 – 2020)

5.3.1	.3. Severity		
Likelihood↓Impact→	Low	Medium	High
Low			
Medium	X		
High			

5.3.1.4.	Countermeasure
J.J. I. T .	Countenneasure

Test Case	None Required
Comments/Guidance	Implement NTP NTS on your client device to authenticate the NTP
	source

5.4. Normal Operation- Physical Attacks

5.4.1. SD Card Stealing		
Threat Description	User removable SD Card Stealing	
Threat Agent	Local attacker	
Resulting Impact	1. Video clips stolen (Private video footage)	

5.4.1.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			
Moderate			
Easy	Х		

5.4.1.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device		X	
Local Network			
Complete Fleet			

5.4.1	.3. Severity		
Likelihood↓Impact→	Low	Medium	High
Low			
Medium		X	
High			

5.4	.4. Countermeasure
Test Case	<u>SD116</u>

Page 20

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Comments/Guidance	Physical access to the SD card should be made as difficult as possible
	or placed behind an additional physical control such as a screw.

5.4.2. Outdoor Physical threats around QR Code Stealing

Threat Description	Outdoor physical threats around QR code stealing.
Threat Agent	
Resulting Impact	1. Attacker steals the contents of the QR code (or equivalent).

5.4.2.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			
Moderate			
Easy	Х		

5.4.2.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device	X		
Local Network			
Complete Fleet			

5.4.2.3. Severity

Likelihood↓Impact→	Low	Medium	High
Low			
Medium	Х		
High			

5.4.2.4. Countermeasure

Test Case	<u>SI119</u>
Comments/Guidance	The value encoded in the QR code must only allow for bootstrapping an initial secure channel (aka PAKE) and MUST NOT be a static password or other long term direct secret.
	There should be an additional information note about recommending that external cameras should have a removable QR code or recommendations that the consumer remove the code.

5.4.3.Laser/Blinding attack on the physical sensor.Threat DescriptionLaser/Blinding attack on the physical sensor.

Page 21

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Threat Agent	An attacker within visual range of the device.
Resulting Impact	Attacker temporarily disables the camera to walk past "unseen". Attacker
	causes false (nuisance) alarms

5.4.3.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult	X		
Moderate			
Easy			

5.4.3.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device	X		
Local Network			
Complete Fleet			

5.4.3.3. Severity			
Likelihood↓Impact→	Low	Medium	High
Low	X		
Medium			
High			

5.4.3.4. Countermeasure

Test Case	None Required
Comments	The device itself should generate a notification to its Controller that its
	sensor has malfunctioned or that the data being generated might no
	longer be valid.

5.4.4. PIR Ambient Temperature Attacks

Threat Description	PIR Ambient Temperature Attacks	
Threat Agent		
Resulting Impact	Attacker disables the PIR motion sensor and thus avoids detection or raises the ambient temperature of the environment to match the body temperature of the attacker.	

5.4.4.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult	Х	-	
Moderate			
Easy			

Page 22

Copyright © ioXt Alliance, Inc. (2018 – 2020)

5.4.4.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device	X		
Local Network			
Complete Fleet			

5.4.4.3. Severity

Likelihood↓Impact→	Low	Medium	High
Low	Х		
Medium			
High			

5.4.4.4. Countermeasure

Test Case	None Required
Comments/Guidance	If possible a PIR sensor should report the detected ambient temperature to the Controller which may be able to take action if that temp changes unexpectedly.

5.4.5. Adjacent Sensor Attacks

Threat Description	Adjacent sensor attacks. Disabling a secondary sensor like the Motion Sensor.
Threat Agent	
Resulting Impact	Attacker is able to avoid detection and thus being captured on video

5.4.5.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			
Moderate	X		
Easy			

5.4.5.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device	Х		
Local Network			
Complete Fleet			

5.4.5	5.3. Severity		
Likelihood↓Impact→	Low	Medium	High

Page 23

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Low	Х	
Medium		
High		

5.4.5.4.	Countermeasure
Test Case	None Required
Comments/Guidance	

5.5. Normal Operation - Network-based Attacks

5.5.1. Man in the middle attack during video capture to cloud

Threat Description	Attacker intercepts traffic between device and cloud while video is being captured.
Threat Agent	Attacker in network path between device and cloud.
Resulting Impact	Potentially the attacker intercepting the video and streams.

5.5.1.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			
Medium		X	
Easy			

5.5.1.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device			
Local Network			Х
Complete Fleet			

5.5.1.3.	Severity
----------	----------

Likelihood↓Impact→	Low	Medium	High
Low			
Medium			Х
High			

5.5.2. Countermeasure

Test Case	SI1.1, SI1.2, SI1.3, SI1.4, SI2.1, SI2.2, SI2.3, PC1
Comments/Guidance	

Page 24

Copyright © ioXt Alliance, Inc. (2018 – 2020)

Page 25

Copyright © ioXt Alliance, Inc. (2018 – 2020)

5.5.3. Man in the middle attack during camera control from cloud to device

Threat Description	Attacker intercepts traffic between device and cloud over the local network while remote commands are being sent. This can include recording commands, audio talk-back, or PTZ.
Threat Agent	Attacker in network path between device and cloud.
Resulting Impact	Attacker can deny service to the device, preventing it from performing the requested command.

5.5.3.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult			
Medium		Х	
Easy			

5.5.3.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device			
Local Network			Х
Complete Fleet			

5.5.3.3. Severity

Likelihood↓Impact→	Low	Medium	High
Low			
Medium			X
High			

5.5.3.4. Countermeasure

Test Case	SI1.1, SI1.2, SI1.3, SI1.4, SI2.1, SI2.2, SI2.3, PC1		
	Add higher level options which include certificates.		
Comments/Guidance			

Copyright © ioXt Alliance, Inc. (2018 – 2020)

5.6. Normal Operation - Functional Attacks

5.6.1. Reboots or Automated Firmware Updates while

Monitoring

Threat Description	Attacker can predict when a device will be offline and not recording to visually move past the device.
Threat Agent	
Resulting Impact	Attacker can not be seen on the recordings or the live view as the device is not currently active

5.6.1.1. Likelihood

	Physical Access	Proximity Access	Remote Access
Difficult		_	
Medium			
Easy		X	

5.6.1.2. Impact

	Low sensitivity data/DoS	Limited sensitive data/control	Complete compromise
Single Device			X
Local Network			
Complete Fleet			

5.6.1.3. Severity

Likelihood↓Impact→	Low	Medium	High
Low			
Medium			
High		X	

5.6.1.4.	Countermeasure

Test Case	<u>AA105</u>
Comment	Reboots or Automatic Firmware Updates must be done at a
	non-predictable random time.

Copyright © ioXt Alliance, Inc. (2018 – 2020)